S, N and Cl Separately Doped Graphene Oxide/Polyaniline Composites for Hybrid Supercapacitor Electrode

Author:

Yazar SibelORCID,Arvas Melih BesirORCID,Sahin YucelORCID

Abstract

Conducting polymer and carbon-based materials are important in supercapacitor applications as capacitive materials. However, the use of these materials alone limits their application due to poor rate capability and short lifetime or low capacitance. Herein, the supercapacitor electrodes were successfully synthesized by two step process on the carbon-felt. Firstly, S-GO, N-GO and Cl-GO was obtained by chronoamperometry method at room temperature. After, PANI composites were synthesized through a hydrothermal method with S, N and Cl heteroatom doped graphene oxide powders. The best specific capacitance for Cl-GO doped PANI (PANI/Cl-GO) electrode reaches 1217 mFcm−2 (608.3 Fg−1) at 4 A g−1 and, significantly higher that the results of PANI and other hybrids. Moreover, the symmetric supercapacitor using PANI/Cl-GO electrodes demonstrates excellent long-life performance after 5000 cycle (96.9%). The device has a maximum energy density of 42.8 Wh kg−1 while delivering a power density of 250 W kg−1.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3