Review—The Design, Performance and Continuing Development of Electrochemical Reactors for Clean Electrosynthesis

Author:

Perry Samuel C.ORCID,Ponce de León CarlosORCID,Walsh Frank C.

Abstract

A critical review of classical and improved electrodes, electrocatalysts and reactors is provided. The principles governing the selection of electrochemical flow reactor or progression of a particular design for laboratory or pilot scale are reviewed integrating the principles of electrochemistry and electrochemical engineering with practical aspects. The required performance, ease of assembly, maintenance schedule and scale-up plans must be incorporated. Reactor designs can be enhanced by decorating their surfaces with nanostructured electrocatalysts. The simple parallel plate geometry design, often in modular, filter-press format, occupies a prominent position, both in the laboratory and in industry and may incorporates porous, 3D or structured electrode surfaces and bipolar electrical connections considering the reaction environment, especially potential- and current-distributions, uniformity of flow, mass transport rates, electrode activity, side reactions and current leakage. Specialised electrode geometries include capillary gap and thin film cells, rotating cylinder electrodes, 3-D porous electrodes, fluidised bed electrodes and bipolar trickle tower reactors. Applications span inorganic, organic electrosynthesis and environmental remediation. Recent developments in cell design: 3D printing, nanostructured, templating 3D porous electrodes, microchannel flow, combinatorial electrocatalyst studies, bioelectrodes and computational modelling. Figures of merit describing electrochemical reactor performance and their use are illustrated. Future research and development needs are suggested.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Reference241 articles.

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3