Review—Recent Advances of Carbon-Based Nanocomposites as the Anode Materials for Lithium-Ion Batteries: Synthesis and Performance

Author:

Febrian Rizki,Septiani Ni Luh WulanORCID,Iqbal MuhammadORCID,Yuliarto BrianORCID

Abstract

Lithium-ion (Li-ion) batteries as an energy storage device have drawn significant attention due to increasing demand especially in transportation, mobile, and renewable energy applications. Despite their wide utilization, the improvement of Li-ion batteries’ performance, including the enhancement of energy density, stability, and safety, remains a big challenge to overcome. Carbon nanostructures (1D, 2D, 3D) show potential as the anode materials for Li-ion batteries which possess high stability and Li-ion conductivity, yet they offer low capacity. Contrarily, metalloids and transition metal oxides materials, which show high capacity, suffer low Li-ion conductivity and exhibit volume expansion during charge/discharge. Combining these materials with carbon nanostructures to create carbon-based nanocomposites as the anode materials for Li-ion batteries is considered one of the most lucrative strategies to achieve improved performance. These composites form high stability, high conductivity, and high-capacity anode materials. Furthermore, the addition of heteroatoms to carbon nanostructures also significantly increases capacity. Herein, we intensively discuss several categories of carbon-based nanocomposites and the effect on their properties as well as performance (initial charge/discharge capacity, cycling performance). In addition, several future prospects and challenges are addressed.

Funder

Institut Teknologi Bandung

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3