Low-Temperature Characterization of a Nonaqueous Liquid Electrolyte for Lithium Batteries

Author:

Hickson Darby T.ORCID,Im JuliaORCID,Halat David M.ORCID,Karvat Aakash,Reimer Jeffrey A.ORCID,Balsara Nitash P.ORCID

Abstract

Rechargeable batteries exhibit poor performance at low temperatures due to sluggish ion transport through the electrolytic phase. Ion transport is governed by three transport parameters—conductivity, diffusion coefficient, and the cation transference number with respect to the solvent velocity—and the thermodynamic factor. Understanding how these parameters change with temperature is necessary for designing improved electrolytes. In this work, we combine electrochemical techniques with electrophoretic NMR to determine the temperature dependence of these parameters for a liquid electrolyte, LiTFSI salt dissolved in tetraglyme between −20 and 45 °C. At colder temperatures, all species in the electrolyte tend to move more slowly due to increasing viscosity, which translates to a monotonic decrease in conductivity and diffusion coefficient with decreasing temperature. Surprisingly, we find that the field-induced velocity of solvent molecules at a particular salt concentration is a nonmonotonic function of temperature. The cation transference number with respect to the solvent velocity thus exhibits a complex dependence on temperature and salt concentration. The measured thermodynamic and transport properties are used to predict concentration gradients that will form in a lithium-lithium symmetric cell under a constant applied potential as a function of temperature using concentrated solution theory. The calculated steady current at −20 °C is lower than that at 45 °C by roughly two orders of magnitude.

Funder

Vehicle Technologies Office

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3