Abstract
Proton exchange membrane fuel cells (PEMFC) require a gas diffusion layer (GDL) to aid in the transport of liquid fuel to the catalyst layer. In this work, direct modeling using the Lattice Boltzmann Method (LBM) was applied to X-ray CT scans of four different carbon gas diffusion layers to understand the mass transport properties through the samples. Three injection orientations were used to study local saturation levels, water evolution through the sample, and mass transport behavior at breakthrough conditions. The LBM, combined with computational fluid dynamic modeling techniques, can accurately predict liquid saturation at the macro and micro scale, which provides more insight into the mass transport phenomena through the GDL. The change of pore structure and orientation in both the in-plane and through-plane determines the path that liquid water must take, which could aid or impact PEMFC performance. The outcomes from this work will also benefit any research that needs knowledge of internal mass transport qualities of gas diffusion media.
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献