A Machine Learning Model for Adsorption Energies of Chemical Species Applied to CO2 Electroreduction

Author:

Amaral Paulo H. R.ORCID,Torrez-Baptista Alvaro D.ORCID,Dionisio Dawany,Lopes Thiago,Meneghini Julio R.,Miranda Caetano R.ORCID

Abstract

Machine learning methods are applied to obtain adsorption energies of different chemical species on (100), (111), and (211) FCC surfaces of several transition metals and Pb. Based on information available in databases containing adsorption energies obtained via first-principles calculations, we implemented MLPRegressor, XGBRegressor, Support Vector Regressor, and Stacking machine learning models. The fourth model is created from the combination of the previous three through a Stacking technique. In a broader context, our results showed the robustness of machine learning models and the ability of these methods to speed up the screening materials to specific goals, at a low computational cost. We emphasize the ability of our models to predict the adsorption energy for different systems. Due to their generality of them, we were able to make ion predictions on metallic surfaces, taking into account the influence of different functionals. This capability is of special significance due to the difficulty of calculating the correct energy for charged systems by traditional atomistic simulations. From then on, we made predictions for important chemical species in the CO2 electroreduction process, such as the radical anion CO2 −•, an important intermediary for obtaining new products in view of a negative carbon footprint.

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3