In Situ Stress Measurement of Ni Electrodeposition Using Lateral Shearing Interferometry

Author:

Qiang JunORCID,Luo Kunjie,Dong Yanzhuo,Jiang BingyanORCID,Drummer Dietmar,Roth Benedikt

Abstract

In-situ stress measurement has a significant benefit in revealing the deformation and failure mechanism during the deposition process. However, it is difficult to detect an ultrathin deposit and measure deposits of different scales simultaneously. Here, lateral shearing interferometry was used for in situ stress measurement of Ni deposits. we demonstrated that this method showed great stability and sensitivity during in situ process. Additionally, the accuracy of measurement was also been improved in terms of the measurement error (2.96%) and fluctuation (0.00035) of curvature radius. The system was capable of the measuring radius of curvature as large as 250 m. Theoretical calculation and experimental results coherently suggested that the thickness of measurable deposits can be diminished by decreasing the elastic modulus and thickness of the substrate. PMMA substrates can be used to measure the stress evolution of deposits with a thickness of more than 10 nm. Moreover, suitable substrate material and thickness for stress measurement of deposits with different scales can be selected by theoretical calculation before the experiment. This novel method provides valuable insights into the in situ stress towards the ultrathin deposit and paves the way to further understanding on the mechanism of deformation and failure of the deposition process in different states.

Funder

the National Natural Science Foundation of China

the Hunan Provincial Innovation Foundation for Postgraduate

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3