Abstract
Anomalous diffusion impedance due to the solid-state Li+ diffusion in Li-ion batteries is often troublesome for the analysis. In this work, we propose a novel analytical Parallel-diffusion Warburg (PDW) model and couple it with the conventional equivalent electrical circuit model (EECM) analysis to tackle this long-standing challenge. The analytical expression of the PDW is derived from the classical Fickian diffusion framework, introducing non-unified diffusion coefficients that originate from the diverse crystalline conditions of Li+ diffusion paths, as theoretically demonstrated in the atomistic modeling results. The proposed approach (EECM + PDW) is successfully employed to study the diffusion impedance of thin-film LiNi0.5Mn1.5O4 (LNMO) electrodes and porous LiNi0.80Co0.15Al0.05O2 (NCA) electrodes, demonstrating the applicability and robustness of this method.
Funder
Fonds Wetenschappelijk Onderzoek
Agentschap Innoveren en Ondernemen
Vlaams Supercomputer Centrum
Publisher
The Electrochemical Society
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献