Abstract
Recently, the field of CO2 electrolysis has experienced rapid scientific and technological progress. This review focuses specifically on the electrochemical conversion of CO2 into carbon monoxide (CO), an important “building block” for the chemicals industry. CO2 electrolysis technologies offer potentially carbon-neutral routes for the production of specialty and commodity chemicals. Many different technologies are actively being pursued. Electrochemical CO2 reduction from aqueous solutions stems from the success of alkaline and polymer electrolyte membrane electrolyzers for water electrolysis and uses performance metrics established within the field of aqueous electrochemistry. High-temperature CO2 electrolysis systems rely heavily on experience gained from developing molten carbonate and solid oxide fuel cells, where device performance is evaluated using very different parameters, commonly employed in solid-state electrochemistry. In this review, state-of-the-art low-temperature, molten carbonate, and solid oxide electrolyzers for the production of CO are reviewed, followed by a direct comparison of the three technologies using some of the most common figures of merit from each field. Based on the comparison, high-temperature electrolysis of CO2 in solid oxide electrolysis cells seems to be a particularly attractive method for electrochemical CO production, owing to its high efficiency and proven durability, even at commercially relevant current densities.
Publisher
The Electrochemical Society
Subject
Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials
Cited by
280 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献