Energetic Evaluation and Optimization of Hydrogen Generation and Compression Pathways Considering PEM Water Electrolyzers and Electrochemical Hydrogen Compressors

Author:

Zachert LarsORCID,Suermann MichelORCID,Bensmann BorisORCID,Hanke-Rauschenbach RichardORCID

Abstract

Electrochemical hydrogen compression is seen as a promising alternative to mechanical compression in the context of power-to-gas plants. It can be carried out either as direct co-compression in a water electrolyzer (WE) or via a separate electrochemical hydrogen compressor (EHC). This study analyzes the specific energy demand of different hydrogen generation and compression pathways using WEs and EHCs, both based on proton exchange membrane (PEM) technology, for pressures up to 1000 bar . The energy demand is systematically investigated as a function of design parameters such as pressure, current density, temperature and membrane thickness and presented in overpotential-specific and gas-crossover dependent shares. The analysis reveals intrinsic differences in the compression behavior of WEs and EHCs. In the EHC, permeated hydrogen is simply re-compressed back to the cathode. In the WE, instead, water has to be split again to compensate for the hydrogen loss, causing energetic disadvantages with increasing hydrogen pressure. Moreover, using an EHC enables design parameters to be optimized separately regarding hydrogen generation and compression. Therefore, at low current densities, compression via EHC is already favorable to co-compression via WE for pressures above 4 bar . With increasing current density, however, this intersection point shifts up to pressures above 200 bar .

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3