Comparing the Lithiation and Sodiation of a Hard Carbon Anode Using In Situ Impedance Spectroscopy

Author:

Linsenmann FabianORCID,Pritzl Daniel,Gasteiger Hubert A.ORCID

Abstract

We present in situ electrochemical impedance spectroscopy data measured during (de)sodiation and (de)lithiation of a commercial hard carbon (HC) anode material. For this purpose, two different systems of micro-reference electrodes (μ-RE) were used: a gold-wire reference electrode (μ-GWRE) for Li/HC half-cells and a tin-wire reference electrode (μ-TWRE) for Na/HC half-cells. We show that for both (de)sodiation (using EC/DMC + 1 M NaPF6 electrolyte) and (de)lithiation (using EC/EMC + 1 M LiPF6 electrolyte) the impedance spectra are dominated by a charge transfer resistance (RCT) which is reversibly decreasing/increasing with increasing/decreasing state-of-charge. The contributions to the HC electrode resistance (Ranode), i.e., charge transfer (RCT), pore (Rpore), and separator resistance (RHFR), were obtained by fitting the impedance spectra using a representative equivalent circuit. We conclude that the RCT associated with sodiation of HC is ≈10-fold higher compared to the lithiation of HC at 100% SOC. Furthermore, we compare the evolution of Ranode measured in situ over 52 cycles at the same SOC. We find that the higher electrode resistances for sodiated HC result in a considerably reduced rate capability for HC sodiation. For a potential future commercialization of sodium-ion batteries, the fast-charging properties (=HC sodiation) would be a crucial performance indicator.

Funder

Bundesministerium für Bildung und Forschung

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3