Enhanced Electrochemical Delithiation of LiFePO4 in a Composite Aqueous Electrolyte for High-Performance Olivine FePO4

Author:

Zhao Qing,Zhang ShuORCID,Li TengORCID,Xu Caili,Yang Jian,Qu Bing,Zhou Haiping,Feng TingtingORCID,Wu MengqiangORCID

Abstract

Development of delithiation methods with cost-efficiency and highly kinetic effectivity is of great importance for the preparation of diversified intercalation materials, mechanistic study, and lithium extraction from spent lithium-ion batteries. Electrochemical delithiation in aqueous electrolytes is low-cost, straightforward, and fast, but has been plagued by incomplete delithiation. To address this issue, we propose to add oxidation reagents, usually applied in chemical delithation, to traditional aqueous delithiation electrolyte. As a demonstration, herein, a Na2SO4 + Na2S2O8 composite aqueous electrolyte is used to obtain olivine FePO4 from the electrochemical delithiation of LiFePO4, and compared with the similar delithiation in Na2SO4 aqueous electrolyte. The delithiation goes completion in the composite electrolyte 79% faster than that in traditional electrolyte. The resulting olivine FePO4 exhibits integrity in terms of structure and electrochemical properties, with discharge specific capacity of 157.1 mAh g−1 at 0.1 C, constant voltage plateau of 3.37 V, and 98.8% capacity retention after 100 cycles, all comparable to the LiFePO4 starting material. Mechanistic studies show that Na2S2O8 promotes the electrochemical delithiation by providing acidic and chemically oxidative conditions.

Funder

Natural Science Foundation of Sichuan Province

Department of Science and Technology of Sichuan Province

Key Laboratory of Low-cost Rural Environmental Treatment Technology at Sichuan University of Arts and Science, Education Department of Sichuan Province

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3