Critical Evaluation of Potentiostatic Holds as Accelerated Predictors of Capacity Fade during Calendar Aging

Author:

Schulze Maxwell C.,Rodrigues Marco-Tulio F.ORCID,McBrayer Josefine D.,Abraham Daniel P.ORCID,Apblett Christopher A.,Bloom IraORCID,Chen Zonghai,Colclasure Andrew M.,Dunlop Alison R.ORCID,Fang Chen,Harrison Katharine L.,Liu GaoORCID,Minteer Shelley D.,Neale Nathan R.,Robertson David,Tornheim Adam P.,Trask Stephen E.ORCID,Veith Gabriel M.ORCID,Verma AnkitORCID,Yang Zhenzhen,Johnson ChristopherORCID

Abstract

Li-ion batteries will lose both capacity and power over time due to calendar aging caused by slow parasitic processes that consume Li+ ions. Studying and mitigating these processes is traditionally an equally slow venture, which is especially taxing for the validation of new active materials and electrolyte additives. Here, we evaluate whether potentiostatic holds can be used to accelerate the diagnosis of Li+ loss during calendar aging. The technique is based on the idea that, under the right conditions, the current measured as the cell voltage is held constant can be correlated with the instantaneous rate of side reactions. Thus, in principle, these measurements could capture the rate of capacity fade in real time. In practice, we show that this method is incapable of quantitatively forecasting calendar aging trends. Instead, our study demonstrates that potentiostatic holds can be applied for initial qualitative screening of systems that exhibit promising long-term stability, which can be useful to shrink the parameter space for calendar aging studies. By facilitating the identification of improved formulations, this approach can help accelerate innovation in the battery industry.

Funder

Vehicle Technologies Program

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3