Influence of the Complex Interface between Transport and Catalyst Layer on Water Electrolysis Performance

Author:

Ma Tien-ChingORCID,Hutzler AndreasORCID,Bensmann BorisORCID,Hanke-Rauschenbach RichardORCID,Thiele SimonORCID

Abstract

The interface design between anode catalyst layer (ACL) and porous transport layer (PTL) significantly influences the performance of proton exchange membrane water electrolyzers. Lately, the influence of the ACL/PTL interface on performance is more intensively investigated, including modeling approaches. Contrary to other models that apply through-plane resolved modeling, in-plane models better characterize the ACL/PTL interface. These models separate the interface into three domains: in an open pore area (P), under a contacted solid of the PTL (S), and the interfacial point between the pore and solid (S│P). In our work, we focused on the behavior of the model in the kinetic region, in which no two-phase behavior is to be expected. Consequently, we apply a one-phase model as the main model and a simple two-phase model for comparison. We find that for most reference samples, the one-phase model well describes polarization behavior. However, for samples with larger interfacial contact area, a two-phase model might explain the found effect better even for very low current densities. Finally, we show that the one-phase model and the simple two-phase model can be used to study the general behavior of different solid to pore ratios to guide electrode development in the future.

Funder

Bundesministerium für Bildung und Forschung

Publisher

The Electrochemical Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3