The Influence of Cr-Additives on the Polarization Resistance of Praseodymium-Doped Ceria Cathodes for Solid Oxide Fuel Cells

Author:

Staerz AnnaORCID,Seo Han GilORCID,Klotz DinoORCID,Kim Dennis S.ORCID,LeBeau James M.ORCID,Tuller Harry L.ORCID

Abstract

While Cr poisoning of the oxygen reduction reaction (ORR) at SOFC cathodes is widely agreed to involve deactivation of oxygen exchange sites, the degradation mechanism remains ambiguous. Here, we selected an alternative cathode material Pr0.1Ce0.9O2− δ , free of Sr segregation, to systematically investigate the effect of Cr-induced degradation in ORR. We expand on our previous studies in which the acidity/basicity of binary additives was found to be a strong indicator of the rate of oxygen surface exchange, by electrochemically investigating the ORR activity of the PCO cathode by impedance spectroscopy. Serial infiltration with acidic Cr-based oxides was found to degrade ORR activity as reflected in a 20-fold increase in area specific resistance (ASR) without corresponding changes in activation energy, with the opposite trend obtained with Ca-based oxides. Detected changes in total capacitance, attributed to changes in surface capacitance, also suggest depressed/enhanced PCO surface redox behavior with Cr/Ca-based infiltrants. Taken together, these results point to a more universal source of ORR poisoning/activation, based on acidity/basicity, rather than physical blocking of active sites. With this improved understanding, one can expect progress to be made in the coming years in optimizing means for protecting catalytic surfaces from degradation and/or improving their performance.

Funder

National Research Foundation of Korea

Office of Fossil Energy

Publisher

The Electrochemical Society

Subject

Materials Chemistry,Electrochemistry,Surfaces, Coatings and Films,Condensed Matter Physics,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3