Thin Wafer Handling Challenges and Emerging Solutions

Author:

Farrens Shari N.,Bisson Peter,Sood Sumant,Hermanowski James

Abstract

Temporary bonding attaches substrates to a carrier so that after thinning to the desired thickness further backside fabrications steps can be conducted with "normal" process flows in standard semiconductor equipment. The selection of a suitable temporary adhesive is key to the success of thin wafer handling. The major requirements of temporary adhesives are related to its process flow, thermal stability, chemical resistance, and mechanical strength. The ideal thermal stability should allow high temperature processing up to 400C for dielectric deposition in high aspect ratio vias, polymer curing, solder reflow, metal sintering, permanent bonding or other high temperature processing. The adhesive must be resistant to the chemicals commonly used after wafer thinning. Mechanical strength is required to hold the thin wafer rigidly during processing, especially during permanent bonding applications otherwise the thinned wafer will flex and prevent bonding. The challenge arises in finding a simultaneous solution to these problems while allowing for the gentle release of the thinned substrate to its final, permanent substrate or package without yield loss or stress. This paper will highlight some of the more recent solutions for thin wafer handling that have emerged through technology innovation.

Publisher

The Electrochemical Society

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cu Damascene Process on Temporary Bonded Wafers for Thin Chip Stacking using Cu-Cu Hybrid Bonding;2023 IEEE 73rd Electronic Components and Technology Conference (ECTC);2023-05

2. Thin Memory Chip Fabrication for Multi-stack Hybrid Bonding Applications;2022 IEEE 24th Electronics Packaging Technology Conference (EPTC);2022-12-07

3. Temporary bonding system with photopolymer release layer for 365nm UV debonding without laser;2022 23rd International Conference on Electronic Packaging Technology (ICEPT);2022-08-10

4. Ultrathin Wafer Pre-Assembly and Assembly Process Technologies: A Review;Critical Reviews in Solid State and Materials Sciences;2015-05-07

5. Temporary Bonding and Debonding - An Update on Materials and Methods;Handbook of 3D Integration;2014-06-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3