Author:
Tunckal Cuneyt,Ozkan Karabacak Azime,Tamer Canan Ece,Yolci Omeroglu Perihan,Goksel Zekiye
Abstract
The objective of this study was to optimize the process conditions (in terms of air temperature, air velocity and thickness of the slices) using response surface methodology (RSM) to achieve minimum specific energy consumption and maximum moisture diffusivity during drying of melon slices with a closed loop heat pump drying (HPD) system. An optimum drying temperature of 45 °C, air velocity of 1 m/s and slice thickness of 5.04 mm were recommended with following predicted responses close to experimental values: drying time 216.58 min, total energy consumption 2.94 kWh, coefficient of performance heat pump (COPhp) 3.08, coefficient of performance system (COPws) 2.75, specific moisture extraction rate (SMER) 0.22 kg/kWh, drying rate 2.53, L* value 82.53, a* value -1.83 and b* value 25.82. The most suitable models to represent the drying behavior of optimum melon slices was chosen Wang & Sing. Effective moisture diffusivities (Deff) of the melon slices were ranging from 7.075E-10 - 1.843E-07 m2s-1 and increasing drying air temperature, drying air velocity and slice thickness led to an increment of Deff.
Publisher
EdiUNS - Editorial de la Universidad Nacional del Sur
Subject
Mechanical Engineering,General Chemical Engineering,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献