DARCY FORCHHEIMER FLOW OF WILLIAMSON FLUID PAST A STRETCHING SHEET WITH VARIABLE THERMAL CONDUCTIVITY

Author:

Ahmed Sahin,Das Bikash

Abstract

The primary objective of this experiment is to examine the motion of molecules of Williamson micropolar fluid moving along a stretchable sheet set in a porous regime with microrotation in presence of magnetic field. The coupled partial differential equations are converted into a system of ODEs using appropriate similarity transformations. To solve the system of ODEs, BVP4C solver has been employed with relative tolerance of . To make sure the present study is stable and convergent, all the outcomes are compared to the earlier findings. The impression of various parameters on velocity, temperature and microrotation profile are illustrated with the help of graph. The graph of entropy generation and skin friction and Nusselt number is also plotted against various governing parameters. Through this investigation it is found that Nusselt number can be increases by regulating the porous parameter and the viscosity of the Williamson fluid. The drag at the surface can be minimized by increasing the strength of magnetic field and Williamson fluid parameter. The implication of this study can be found in industrial field where entropy of the system plays an important role for better performance and stability.

Publisher

EdiUNS - Editorial de la Universidad Nacional del Sur

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3