Usefulness of Autofluorescence Video-Monitoring to Enhanced Localization of Parathyroid Glands

Author:

Kim Sung Won,Seo Yoon Soo,Lee Hyoung Shin,Kim Yikeun,Ahn Yeh-Chan,Lee Kang DaeORCID

Abstract

Background and Objectives Near-infrared (NIR) fluorescence photo imaging provides real time parathyroid anatomy enhancement. Moreover, autofluorescence enables intraoperative virtual reality parathyroid exploration of the optical characteristics of the parathyroid gland. This study was performed to demonstrate the new technique of visualizing the parathyroid gland using video-guided autofluorescence during thyroid and parathyroid surgery and to evaluate the outcomes. This is the first study that introduces the video-monitoring technique for intraoperative parathyroid mapping.Subjects and Method A total of 26 patients underwent 18 total thyroidectomies and 8 hemithyroidectomies in 2016. Fifty-six parathyroid glands were enrolled in this study. Surgery was performed by NIR video-monitoring via thyroid lateral side dissection to find the parathyroid tissues and extract the thyroid glands. With the operation room light turned on, the parathyroid glands were identified by the video-guided autofluorescence detection technique carried out in 3 stages (P1, P2, and P3), which are imaging with surgeon’s eyes before parathyroids exposure (P1), after identification (P2), and in extracted specimen (P3).Results The parathryoid autofluorescence could be video-monitored in real time by our NIR camera system with the indoor room light turned on. Of the total 56 parathyroids, 52 were detected by fluorescence. Of these, the location of 43 glands were predicted by using the high signal in a before-exposure state and the glands were confirmed as containing parathyroid tissues [in P1, sensitivity=82.69%, positive predictive value (PPV)=100.00%]. Of the nine glands that did not show high signals in P1, seven glands visually showed fluorescence signals (in P1 and P2, sensitivity=96.15%, PPV=100.00%). One of the two glands that showed high signals in the extracted tissue was identified as parathyroid, but the other one was proved not by histologic examination by despite high intensity fluorescence signal (in P1-P3, sensitivity=100.00%, PPV=98.08%). The accuracy of video-guided parathyroid mapping in P1, P2, and P3 were 83.93%, 96.43%, and 96.43%, respectively.Conclusion This is the first study that demonstrates the parathyroid gland autofluorescence as a real-time video-monitoring technique and shows that it could be applied to real surgery. Although parathyroid autofluorescence is a phenomenon seen in the invisible wavelength, our data suggest that the operator can see the parathyroid fluorescent signal in real time on the video-monitor. This technique could help the operator to predict the gland location and preserve them safely.

Publisher

Korean Society of Otorhinolaryngology-Head and Neck Surgery

Subject

Otorhinolaryngology,Surgery

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3