Criteria for choosing the number of dimensions in a principal component analysis: An empirical assessment

Author:

Silva Renata,Oliveira Daniel,Santos Davi Pereira,Santos Lucio F.D.,Wilson Rodrigo Erthal,Bedo Marcos

Abstract

Principal component analysis (PCA) is an efficient model for the optimization problem of finding d' axes of a subspace Rd' ⊆ Rd so that the mean squared distances from a given set R of points to the axes are minimal. Despite being steadily employed since 1901 in different scenarios, e.g., mechanics, PCA has become an important link in machine learning chained tasks, such as feature learning and AutoML designs. A frequent yet open issue that arises from supervised-based problems is how many PCA axes are required for the performance of machine learning constructs to be tuned. Accordingly, we investigate the behavior of six independent and uncoupled criteria for estimating the number of PCA axes, namely Scree-Plot %, Scree Plot Gap, Kaiser-Guttman, Broken-Stick, p-Score, and 2D. In total, we evaluate the performance of those approaches in 20 high dimensional datasets by using (i) four different classifiers, and (ii) a hypothesis test upon the reported F-Measures. Results indicate Broken-Stick and Scree-Plot % criteria consistently outperformed the competitors regarding supervised-based tasks, whereas estimators Kaiser-Guttman and Scree-Plot Gap delivered poor performances in the same scenarios.

Publisher

Sociedade Brasileira de Computação - SBC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3