Prediction of Reservoir Simulation Jobs Times Using a Real-World SLURM Log

Author:

Nunes Alan L.,Portella Felipe A.,Estrela Paulo J. B.,Malini Renzo Q.,Lopes Bruno,Bittencourt Arthur,Leite Gabriel B.,Coutinho Gabriela,Drummond Lúcia Maria de Assumpção

Abstract

Modeling petroleum field behavior provides crucial knowledge for risk quantification regarding extraction prospects. Since their processing requires significant computational power and storage capabilities, oil companies run reservoir simulation jobs on high-performance computing clusters. Efficiently using machine learning algorithms in job schedulers to predict the incoming job execution time can increase the effectiveness of cluster resources, such as improving its resource usage rate and reducing the job queue time. This paper introduces a novel and robust predictor, based on SLURM logs from Petrobras, that classifies with more than 74% accuracy the duration time interval of reservoir simulation jobs. The results reveal that our model exceeded the performance of the EASY++ algorithm-based estimator.

Publisher

Sociedade Brasileira de Computação

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3