Almost all Permutation Matrices have Bounded Saturation Functions

Author:

Geneson Jesse

Abstract

Saturation problems for forbidden graphs have been a popular area of research for many decades, and recently Brualdi and Cao initiated the study of a saturation problem for 0-1 matrices. We say that a 0-1 matrix $A$ is saturating for the forbidden 0-1 matrix $P$ if $A$ avoids $P$ but changing any zero to a one in $A$ creates a copy of $P$. Define $\mathrm{sat}(n, P)$ to be the minimum possible number of ones in an $n \times n$ 0-1 matrix that is saturating for $P$. Fulek and Keszegh proved that for every 0-1 matrix $P$, either $\mathrm{sat}(n, P) = O(1)$ or $\mathrm{sat}(n, P) = \Theta(n)$. They found two 0-1 matrices $P$ for which $\mathrm{sat}(n, P) = O(1)$, as well as infinite families of 0-1 matrices $P$ for which $\mathrm{sat}(n, P) = \Theta(n)$. Their results imply that $\mathrm{sat}(n, P) = \Theta(n)$ for almost all $k \times k$ 0-1 matrices $P$. Fulek and Keszegh conjectured that there are many more 0-1 matrices $P$ such that $\mathrm{sat}(n, P) = O(1)$ besides the ones they found, and they asked for a characterization of all permutation matrices $P$ such that $\mathrm{sat}(n, P) = O(1)$. We affirm their conjecture by proving that almost all $k \times k$ permutation matrices $P$ have $\mathrm{sat}(n, P) = O(1)$. We also make progress on the characterization problem, since our proof of the main result exhibits a family of permutation matrices with bounded saturation functions.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Saturation of Ordered Graphs;SIAM Journal on Discrete Mathematics;2023-06-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3