Improved Bounds on the Multicolor Ramsey Numbers of Paths and Even Cycles

Author:

Knierim Charlotte,Su Pascal

Abstract

We study the multicolor Ramsey numbers for paths and even cycles, $R_k(P_n)$ and $R_k(C_n)$, which are the smallest integers $N$ such that every coloring of the complete graph $K_N$ has a monochromatic copy of $P_n$ or $C_n$ respectively. For a long time, $R_k(P_n)$ has only been known to lie between $(k-1+o(1))n$ and $(k + o(1))n$. A recent breakthrough by Sárközy and later improvement by Davies, Jenssen and Roberts give an upper bound of $(k - \frac{1}{4} + o(1))n$. We improve the upper bound to $(k - \frac{1}{2}+ o(1))n$. Our approach uses structural insights in connected graphs without a large matching.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A lower bound on the multicolor size-Ramsey numbers of paths in hypergraphs;European Journal of Combinatorics;2024-08

2. Random bipartite Ramsey numbers of long cycles;Discrete Applied Mathematics;2024-04

3. Multicolored Bipartite Ramsey Numbers of Large Cycles;Acta Mathematicae Applicatae Sinica, English Series;2023-12-29

4. On Multicolor Ramsey Numbers of Triple System Paths of Length 3;SIAM Journal on Discrete Mathematics;2023-07-12

5. Upper density of monochromatic paths in edge-coloured infinite complete graphs and bipartite graphs;European Journal of Combinatorics;2023-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3