Author:
Lo Allan,Sanhueza-Matamala Nicolás,Wang Guanghui
Abstract
For any subset $A \subseteq \mathbb{N}$, we define its upper density to be $\limsup_{ n \rightarrow \infty } |A \cap \{ 1, \dotsc, n \}| / n$. We prove that every $2$-edge-colouring of the complete graph on $\mathbb{N}$ contains a monochromatic infinite path, whose vertex set has upper density at least $(9 + \sqrt{17})/16 \approx 0.82019$. This improves on results of Erdős and Galvin, and of DeBiasio and McKenney.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献