Codegree Threshold for Tiling Balanced Complete $3$-Partite $3$-Graphs and Generalized $4$-Cycles

Author:

Hou Xinmin,Liu Boyuan,Ma Yue

Abstract

Given two $k$-graphs $F$ and $H$, a perfect $F$-tiling (also called an $F$-factor) in $H$ is a set of vertex-disjoint copies of $F$ that together cover the vertex set of $H$. Let $t_{k-1}(n, F)$ be the smallest integer $t$ such that every  $k$-graph $H$ on $n$ vertices with minimum codegree at least $t$ contains a perfect $F$-tiling.  Mycroft (JCTA, 2016) determined  the asymptotic values of $t_{k-1}(n, F)$ for $k$-partite $k$-graphs $F$ and conjectured that the error terms $o(n)$ in $t_{k-1}(n, F)$ can be replaced by a constant that depends only on $F$. In this paper, we determine the exact value of $t_2(n, K_{m,m}^{3})$, where $K_{m,m}^{3}$ (defined by Mubayi and Verstraëte, JCTA, 2004) is the 3-graph obtained from the complete bipartite graph $K_{m,m}$ by replacing each vertex in one part by a 2-elements set. Note that $K_{2,2}^{3}$ is  the well known  generalized 4-cycle $C_4^3$ (the 3-graph on six vertices and four distinct edges $A, B, C, D$ with $A\cup B= C\cup D$ and $A\cap B=C\cap D=\emptyset$). The result confirms Mycroft's conjecture for $K_{m,m}^{3}$. Moreover, we improve the error term $o(n)$ to a sub-linear term when $F=K^3(m)$ and show that the sub-linear term is tight for $K^3(2)$, where $K^3(m)$ is the complete $3$-partite $3$-graph with each part of size $m$.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3