Geometric Realization of $\gamma$-Vectors of Subdivided Cross Polytopes
-
Published:2020-06-12
Issue:2
Volume:27
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Aisbett Natalie,Volodin Vadim
Abstract
For any flag simplicial complex $\Theta$ obtained by stellar subdividing the boundary of the cross polytope in edges, we define a flag simplicial complex $\Delta(\Theta)$ whose $f$-vector is the $\gamma$-vector of $\Theta$. This proves that the $\gamma$-vector of any such simplicial complex is the face vector of a flag simplicial complex, partially solving a conjecture by Nevo and Petersen. As a corollary we obtain that such simplicial complexes satisfy the Frankl-Füredi-Kalai inequalities.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On the Gamma-Vector of Symmetric Edge Polytopes;SIAM Journal on Discrete Mathematics;2023-04-26