Author:
Capparelli Stefano,Fra Alberto Del
Abstract
Marco Buratti has conjectured that, given an odd prime $p$ and a multiset $L$ containing $p-1$ integers taken from $\{1,\ldots,(p-1)/2\}$, there exists a Hamiltonian path in the complete graph with $p$ vertices whose multiset of edge-lengths is equal to $L$ modulo $p$. We give a positive answer to this conjecture in the case of multisets of the type $\{1^a,2^b,3^c\}$ by completely classifying such multisets that are linearly or cyclically realizable.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献