Abstract
In this paper we improve the upper bound on the multi-color Ramsey numbers of paths and even cycles. More precisely, we prove the following. For every $r\geq 2$ there exists an $n_0=n_0(r)$ such that for $n\geq n_0$ we have $$R_r(P_n) \leq \left( r - \frac{r}{16r^3+1} \right) n.$$ For every $r\geq 2$ and even $n$ we have $$R_r(C_n) \leq \left( r - \frac{r}{16r^3+1} \right) n + o(n) \text{ as }n\rightarrow \infty.$$ The main tool is a stability version of the Erdős-Gallai theorem that may be of independent interest.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献