Irreducible Subcube Partitions
-
Published:2023-09-08
Issue:3
Volume:30
Page:
-
ISSN:1077-8926
-
Container-title:The Electronic Journal of Combinatorics
-
language:
-
Short-container-title:Electron. J. Combin.
Author:
Filmus Yuval,Hirsch Edward A.,Kurz Sascha,Ihringer Ferdinand,Ryazanov Artur,Smal Alexander V.,Vinyals Marc
Abstract
A subcube partition is a partition of the Boolean cube $\{0,1\}^n$ into subcubes. A subcube partition is irreducible if the only sub-partitions whose union is a subcube are singletons and the entire partition. A subcube partition is tight if it “mentions” all coordinates.
We study extremal properties of tight irreducible subcube partitions: minimal size, minimal weight, maximal number of points, maximal size, and maximal minimum dimension. We also consider the existence of homogeneous tight irreducible subcube partitions, in which all subcubes have the same dimensions. We additionally study subcube partitions of $\{0,\dots,q-1\}^n$, and partitions of $\mathbb{F}_2^n$ into affine subspaces, in both cases focusing on the minimal size.
Our constructions and computer experiments lead to several conjectures on the extremal values of the aforementioned properties.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Affine vector space partitions;Designs, Codes and Cryptography;2023-06-25