Author:
Gutekunst Samuel C.,Mészáros Karola,Petersen T. Kyle
Abstract
We study the connection between triangulations of a type $A$ root polytope and the resonance arrangement, a hyperplane arrangement that shows up in a surprising number of contexts. Despite an elementary definition for the resonance arrangement, the number of resonance chambers has only been computed up to the $n=8$ dimensional case. We focus on data structures for labeling chambers, such as sign vectors and sets of alternating trees, with an aim at better understanding the structure of the resonance arrangement, and, in particular, enumerating its chambers. Along the way, we make connections with similar (and similarly difficult) enumeration questions. With the root polytope viewpoint, we relate resonance chambers to the chambers of polynomiality of the Kostant partition function. With the hyperplane viewpoint, we clarify the connections between resonance chambers and threshold functions. In particular, we show that the base-2 logarithm of the number of resonance chambers is asymptotically $n^2$.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献