A Bijection Proving the Aztec Diamond Theorem by Combing Lattice Paths

Author:

Bosio Frédéric,Van Leeuwen Marc A. A.

Abstract

We give a bijective proof of the Aztec diamond theorem, stating that there are $2^{n(n+1)/2}$ domino tilings of the Aztec diamond of order $n$. The proof in fact establishes a similar result for non-intersecting families of $n+1$ Schröder paths, with horizontal, diagonal or vertical steps, linking the grid points of two adjacent sides of an $n\times n$ square grid; these families are well known to be in bijection with tilings of the Aztec diamond. Our bijection is produced by an invertible "combing'' algorithm, operating on families of paths without non-intersection condition, but instead with the requirement that any vertical steps come at the end of a path, and which are clearly $2^{n(n+1)/2}$ in number; it transforms them into non-intersecting families.

Publisher

The Electronic Journal of Combinatorics

Subject

Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Domino Tilings of Aztec Octagons;Graphs and Combinatorics;2023-04-06

2. Linear Recurrences for Cylindrical Networks;International Mathematics Research Notices;2017-10-12

3. Enumeration of antisymmetric monotone triangles and domino tilings of quartered Aztec rectangles;Discrete Mathematics;2016-05

4. A generalization of Aztec diamond theorem, part II;Discrete Mathematics;2016-03

5. A New Simple Proof of the Aztec Diamond Theorem;Graphs and Combinatorics;2015-12-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3