Author:
Joret Gwenaël,Micek Piotr
Abstract
Weak coloring numbers generalize the notion of degeneracy of a graph. They were introduced by Kierstead & Yang in the context of games on graphs. Recently, several connections have been uncovered between weak coloring numbers and various parameters studied in graph minor theory and its generalizations. In this note, we show that for every fixed $k\geq1$, the maximum $r$-th weak coloring number of a graph with simple treewidth $k$ is $\Theta(r^{k-1}\log r)$. As a corollary, we improve the lower bound on the maximum $r$-th weak coloring number of planar graphs from $\Omega(r^2)$ to $\Omega(r^2\log r)$, and we obtain a tight bound of $\Theta(r\log r)$ for outerplanar graphs.
Publisher
The Electronic Journal of Combinatorics
Subject
Computational Theory and Mathematics,Geometry and Topology,Theoretical Computer Science,Applied Mathematics,Discrete Mathematics and Combinatorics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献