Profiling mitochondrial DNA mutations in tumors and circulating extracellular vesicles of triple‐negative breast cancer patients for potential biomarker development

Author:

Vikramdeo Kunwar Somesh12ORCID,Anand Shashi12ORCID,Sudan Sarabjeet Kour12ORCID,Pramanik Paramahansa3ORCID,Singh Seema124ORCID,Godwin Andrew K.567ORCID,Singh Ajay Pratap124ORCID,Dasgupta Santanu124ORCID

Affiliation:

1. Mitchell Cancer Institute, University of South Alabama Mobile Alabama USA

2. Department of Pathology, College of Medicine University of South Alabama Mobile Alabama USA

3. Department of Mathematics and Statistics University of South Alabama Mobile Alabama USA

4. Department of Biochemistry and Molecular Biology University of South Alabama Mobile Alabama USA

5. Department of Pathology and Laboratory Medicine University of Kansas Medical Center Kansas City Kansas USA

6. The University of Kansas Cancer Center, University of Kansas Medical Center Kansas City Kansas USA

7. Kansas Institute for Precision Medicine, University of Kansas Medical Center Kansas City Kansas USA

Abstract

AbstractEarly detection and recurrence prediction are challenging in triple‐negative breast cancer (TNBC) patients. We aimed to develop mitochondrial DNA (mtDNA)‐based liquid biomarkers to improve TNBC management. Mitochondrial genome (MG) enrichment and next‐generation sequencing mapped the entire MG in 73 samples (64 tissues and 9 extracellular vesicles [EV] samples) from 32 metastatic TNBCs. We measured mtDNA and cardiolipin (CL) contents, NDUFB8, and SDHB protein expression in tumors and in corresponding circulating EVs. We identified 168 nonsynonymous mtDNA mutations, with 73% (123/186) coding and 27% (45/168) noncoding in nature. Twenty percent of mutations were nucleotide transversions. Respiratory complex I (RCI) was the key target, which harbored 44% (74/168) of the overall mtDNA mutations. A panel of 11 hotspot mtDNA mutations was identified among 19%–38% TNBCs, which were detectable in the serum‐derived EVs with 82% specificity. Overall, 38% of the metastatic tumor‐signature mtDNA mutations were traceable in the EVs. An appreciable number of mtDNA mutations were homoplasmic (18%, 31/168), novel (14%, 23/168), and potentially pathogenic (9%, 15/168). The overall and RCI‐specific mtDNA mutational load was higher in women with African compared to European ancestry accompanied by an exclusive abundance of respiratory complex (RC) protein NDUFB8 (RCI) and SDHB (RCII) therein. Increased mtDNA (p < 0.0001) content was recorded in both tumors and EVs along with an abundance of CL (p = 0.0001) content in the EVs. Aggressive tumor‐signature mtDNA mutation detection and measurement of mtDNA and CL contents in the EVs bear the potential to formulate noninvasive early detection and recurrence prediction strategies.

Publisher

Wiley

Subject

Cancer Research,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3