A combination of 5/6‐nephrectomy and unilateral ureteral obstruction model accelerates progression of remote organ fibrosis in chronic kidney disease

Author:

Homma Kyoka1,Enoki Yuki1ORCID,Uchida Sato1,Taguchi Kazuaki1,Matsumoto Kazuaki1

Affiliation:

1. Division of Pharmacodynamics Keio University Faculty of Pharmacy Tokyo Japan

Abstract

AbstractChronic kidney disease (CKD) involves progressive renal fibrosis, which gradually reduces kidney function and often causes various complications in extrarenal tissues. Therefore, we investigated fibrogenesis in extrarenal tissues (heart, liver, and lungs) in different experimental CKD models, such as the 5/6‐nephrectomy (5/6 Nx), unilateral ureteral obstruction (UUO), and a combination (2/3 Nx + UUO). We evaluated the degree of fibrogenesis in kidneys and extrarenal tissues by histological analysis and quantification of fibrosis‐related gene and protein expression. To elucidate the fibrosis mechanisms observed in 2/3 Nx + UUO mice, we evaluated the effect of indoxyl sulfate (IS), a typical uremic toxin accumulated in CKD, and transforming growth factor‐β (TGF‐β), a fibrosis‐related factor, on fibrosis using human hepatoma (HepG2) and RAW264.7 cells. A significant decline in renal function was observed in the 5/6 Nx and 2/3 Nx + UUO models, whereas a significant increase in renal fibrosis was observed only in the obstructed kidneys. Notable amount of fibrosis was induced in the liver and heart in the 2/3 Nx + UUO model, with the induction of macrophage infiltration and increased tissue IS and TGF‐β levels. In agreement with the results of in vivo experiments, co‐stimulation with IS, TGF‐β, and macrophage‐conditioned medium increased the expression of fibrogenic genes in HepG2 cells. We demonstrated that the 2/3 Nx + UUO model induced both loss of renal function and renal fibrosis in the earlier stages, providing a novel CKD model that induces remote organ fibrosis in a shorter time.

Publisher

Wiley

Subject

Cancer Research,Biochemistry, Genetics and Molecular Biology (miscellaneous),Molecular Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3