EFEITO DOS DEFEITOS DE SUPERFÍCIE E DO pH NA ADSORÇÃO E NA CATÁLISE DA ELETRO-OXIDAÇÃO DE CO EM SUPERFÍCIES MODELOS DE PLATINA

Author:

Farias ManuelORCID,Tremiliosi-Filho Germano,Camara Giuseppe

Abstract

SURFACE DEFECTS AND pH EFFECTS ON ADSORPTION AND CATALYSIS OF CO ELECTRO-OXIDATION ON MODEL PLATINUM SURFACES. Platinum is one of the well-known catalytic materials for which the electro-oxidation of carbon monoxide better behaves as a sensitive reaction to the catalyst surface structure. For the electro-catalytic reactions that behave like this, the rate (faradaic current density) is the result of the sum of the activity of the different active sites working with very different efficiencies or abilities. In this scenario, different atomic arrangements on the catalyst surface are expected to play different roles in surface-catalyzed reactions. In this article, the functionalities that surface defects (steps) can play in the adsorption and electrocatalytic oxidation of CO on model platinum surfaces are reviewed. Surface defects are indirectly related to the up catalysis as well as to the inhibition of reaction pathways of CO electro-oxidation under very particular conditions; these surface entities are also indirectly related to restrictions for the mobility of adsorbed CO on the (111) terraced surfaces. We analyze the selective activation and deactivation of surface sites by the pH effect, and typical catalytic properties of extended surfaces and shaped-controlled nanoparticles have been discussed thoroughly. We present a model of most active sites involved in the pathways of CO2 formation from the electro-oxidation of adsorbed CO.

Publisher

Sociedade Brasileira de Quimica (SBQ)

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3