FEATURES AND STRATEGIES FOR SCAFFOLD DESIGN AND PRODUCTION FOR TISSUE ENGINEERING

Author:

Souza Leonardo,Vieira Paula,Florindo Raissa,Alavarse Alex,Bonvent Jean

Abstract

Failure or loss of human tissues and organs due to illness or injury requires the partial or even total transplantation. Although transplantation is a successful intervention, donor availability and immune rejections represent still the main drawbacks. In addition, the fast and proper recovery of the patient is nowadays more than necessary to prevent infection, chronic inflammation, and other complications during the tissue/organ healing process. There is still a tremendous interest of alternatives to transplantation, such as scaffold-based tissue engineering, that may contribute to practical outcomes for the worldwide health concern related to severe tissue injuries. Herein, we explore the features, benefits and scaffold designs applied for biotechnological sciences, particularly for tissue engineering. The great potential to transform biocompatible polymers in three-dimensional matrix, assimilating the extracellular matrix (ECM), makes them attractive for cells adhesion and proliferation. On the basic of relevant results recently reported in the literature, along with the pioneering works, we discuss specific issues and challenges such as matrix-cell interactions, strategies to design scaffolds with homogeneous nano/microscales using different techniques, e.g., hydrogels, electrospinning, and rotary jet spinning, as well as the combination of some of these techniques.

Publisher

Sociedade Brasileira de Quimica (SBQ)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3