Abstract
Sustainable and environmentally friendly methods for nanomaterials synthesis have been emerging recently. The use of extracts of polyphenol-rich plants with high reducing and chelating power is advantageous because the polyphenol can protect the nanomaterial from agglomeration and deactivation. Green nanomaterials have been applied in several areas, including remediation of toxic organic pollutants from contaminated effluents. Herein, we describe the preparation of green iron oxide nanoparticles (IONPs) with extracts of the plant Camellia sinensis as black tea for dye removal application. The as-prepared IONPs were composed of amorphous FeOOH and FeII/III-polyphenol complexes. To obtain crystalline and pure iron-based nanomaterials, the amorphous precursor was annealed at 900 ºC. Samples of black tea from different regions were used to verify the reproducibility of the iron phases formed. The same iron phases were obtained for all black tea samples, α-Fe2O3 (hematite), FePO4, and Fe3PO7, but in different proportions. The materials were applied as heterogeneous-Fenton catalysts for the removal of the dye methyl orange. The amorphous as-prepared IONPs were more active than the respective annealed IONPs due to the proton release from the polyphenol into the reaction medium, setting the pH to around 3, which is the optimum pH for the Fenton system.
Publisher
Sociedade Brasileira de Quimica (SBQ)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献