Analysis of modern SOTA-architectures of artificial neural networks for solving problems of image classification and object detection

Author:

Korchagin Valeriy Dmitrievich

Abstract

The scientific research is focused on conducting a study of current artificial neural network architectures in order to highlight the advantages and disadvantages of current approaches. The relevance of the research relies on the growing interest in machine learning technologies and regular improvement of computer vision algorithms.Within the scope of this paper, an analytical study of the advantages and disadvantages of existing solutions has been conducted and advanced SOTA architectures have been reviewed. The most effective approaches to improve the accuracy of basic models have been studied. The number of parameters used, the size of the training sample, the accuracy of the model, its size, adaptability, complexity and the required computational resources for training a single architecture were determined.Prospects for further research in the field of hybridization of convolutional neural networks and visual transformers are revealed, and a new solution for building a complex neural network architecture is proposed.In the framework of the present research work, a detailed analysis of the internal structure of the most effective neural network architectures.Plots of the accuracy dependence on the number of parameters used in the model and the size of the training sample are plotted. The conducted comparative analysis of the efficiency of the considered solutions allowed to single out the most effective methods and technologies for designing artificial neural network architectures. A novel method focused on creating a complex adaptive model architecture that can be dynamically tuned depending on an input set of parameters is proposed, representing a potentially significant contribution to the field of adaptive neural network design.

Publisher

Aurora Group, s.r.o

Reference33 articles.

1. Gomolka Z., Using artificial neural networks to solve the problem represented by BOD and DO indicators //Water. – 2017. – T. 10. – №. 1. – S. 4.

2. Kadurin A., Nikolenko S., Arkhangel'skaya E. Glubokoe obuchenie. Pogruzhenie v mir neironnykh setei //SPb.: Piter. – 2018. – T. 480.

3. Dzhabrailov Shaban Vagif Ogly, Rozaliev Vladimir Leonidovich, Orlova Yuliya Aleksandrovna Podkhody i realizatsii komp'yuternoi imitatsii intuitsii // Vestnik evraziiskoi nauki. 2017. №2 (39).

4. Babushkina, N. E. Vybor funktsii aktivatsii neironnoi seti v zavisimosti ot uslovii zadachi / N. E. Babushkina, A. A. Rachev // Innovatsionnye tekhnologii v mashinostroenii, obrazovanii i ekonomike. – 2020. – T. 27, № 2(16). – S. 12-15.

5. Sosnin A. S., Suslova I. A. Funktsii aktivatsii neiroseti: sigmoida, lineinaya, stupenchataya, relu, tahn. – 2019. – S. 237.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3