Abstract
A dengue epidemic model with fractional order derivative is formulated to investigate the effect of temperature on the spread of the vector-host transmitted dengue disease. The model consists of system of fractional order differential equations formulated within Caputo fractional operator. The stability of the equilibrium points of the considered dengue model is studied. The corresponding basic reproduction number R_0 is derived and it is proved that if R_0 < 1, the disease-free equilibrium (DFE) is locally asymptotically stable. L1 method is applied to solve the dengue model numerically. Finally, numerical simulations are also presented to illustrate the analytical results showing the influence of thetemperature on the dynamics of the vector-host interaction in dengue epidemics.
Publisher
International Journal of Optimization and Control: Theories and Applications
Subject
Applied Mathematics,Control and Optimization
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献