Early Detection of Stroke for Ensuring Health and Well-Being Based on Categorical Gradient Boosting Machine

Author:

Nti Isaac Kofi,Nyarko-Boateng Owusu,Aning Justice,Fosu Godfred Kusi,Pokuaa Henrietta Adjei,Kyeremeh Frimpong

Abstract

Stroke is believed to be among the leading causes of adult disability worldwide. It is wreaking havoc on African people, families, and governments, with ramifications for the continent’s socio-economic development. On the other hand, stroke research output is insufficient, resulting in a dearth of evidence-based and context-driven guidelines and strategies to combat the region’s expanding stroke burden. Indeed, for African and other developing economies to meet the UN Sustainable Development Goals (SDGs), particularly SDG 3, which aims to guarantee healthy lifestyles and promote well-being for people of all ages, the issue of stroke must be addressed to reduce early death from non-communicable illnesses. This study sought to create a robust predictive model for early stroke diagnosis using an understandable machine learning (ML) technique. We implemented a categorical gradient boosting machine model for early stroke prediction to protect patients’ health and well-being. We compared the effectiveness of our proposed model to existing state-of-the-art machine learning models and previous studies by empirically testing it on a real-world public stroke dataset. The proposed model outperformed the others when compared to the other methods using the research data, achieving the maximum accuracy (96.56%), the area under the curve (AUC) (99.73%), F1-measure (96.68%), recall (99.24%), and precision (93.57%). Functional outcome prediction models based on machine learning for stroke were verified and shown to be adaptable and helpful.

Publisher

The Institute for Research and Community Services (LPPM) ITB

Subject

Electrical and Electronic Engineering,Information Systems and Management,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3