Numerical Solution of nth Order DAEM for Kinetic Study of Lignocellulosic Biomass Pyrolysis

Author:

Kristanto Jonas,Azis Muhammad Mufti,Purwono Suryo

Abstract

The aim of the present study was to explore the most optimal configuration to numerically solve Distributed Activation Energy Models (DAEMs). DAEMs are useful in obtaining the kinetic parameters in non-isothermal kinetic studies using a thermogravimetry analyzer (TGA). Compared to other kinetic models, DAEMs provide an additional kinetic parameter that quantifies the extent of the reaction (σ) for each reaction’s mean activation energy (E ̅). Although DAEMs are efficacious in kinetic studies, solving DAEMs numerically is challenging. The DAEM equation includes double integration with respect to activation energy and temperature, which involves various numerical discretizations. Previously, many researchers utilized a DAEM to explicate complex reactions such as lignocellulosic biomass pyrolysis. However, most of them have yet to propose a numerical approach to solve DAEMs. Therefore, by exploring multiple numerical calculation configurations, here we present a general structure to numerically solve nth order and first-order DAEMs. The exploration includes determining the optimal integration limit of activation energy and the discretization of activation energy and temperature integration. From the investigation, we came up with a configuration that limits the integration of activation energy from E ̅-3σ to E ̅+3σ. Meanwhile, the number of integration points for temperature and activation energy must be 51 and 21, respectively. By using this configuration, DAEM can be utilized optimally in kinetic studies.

Publisher

The Institute for Research and Community Services (LPPM) ITB

Subject

General Engineering,Engineering (miscellaneous),Mechanical Engineering,Civil and Structural Engineering,Chemical Engineering (miscellaneous),Environmental Science (miscellaneous),Materials Science (miscellaneous),Earth-Surface Processes

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3