In Silico Prediction Tool for Drug-likeness of Compounds based on Ligand Based Screening

Author:

Ani R ,Anand P S ,Sreenath B ,Deepa O S

Abstract

Drug Likeness prediction is a time-consuming and tedious process. An in-vitro method the drug development takes a long time to come to market. The failure rate is also another one to think about in this method. There are many in-silico methods currently available and developing to help the drug discovery and development process. Many online tools are available for predicting and classifying a drug after analyzing the drug-likeness properties of compounds. But most tools have their advantages and disadvantages. In this study, a tool is developed to predict the drug-likeness of compounds given as input to this software. This may help the chemists in analyzing a compound before actually preparing a compound for the drug discovery process. The tool includes both descriptor-based calculation and fingerprint-based calculation of the particular compounds. The descriptor-calculation also includes a set of rules and filters like Lipinski’s rule, Ghose filter, Veber filter and BBB likeness. The previous studies proved that the fingerprint-based prediction is more accurate than descriptor-based prediction. So, in the current study, the drug-likeness prediction tool incorporated the molecular descriptors and fingerprint-based calculations based on five different fingerprint types. The current study incorporated five different machine learning algorithms for prediction of drug-likeness and selected the algorithm, which has a high accuracy rate. When a chemist inputs a particular compound in SMILES format, the drug-likeness prediction tool predicts whether the given candidate compound is drug or non-drug.

Publisher

GP Innovations Pvt. Ltd.

Subject

General Pharmacology, Toxicology and Pharmaceutics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3