Abstract
В работе проводится исследование дробного нелинейного осциллятора Матье методами численного анализа с целью установления его различных колебательных режимов. Дробный нелинейный осциллятор Матье представляет собой обыкновенное нелинейное дифференциальное уравнение с дробными производными в смысле Герасимова-Капуто и локальными начальными условиями (задача Коши). Дробные производные Герасимова-Капуто характеризуют наличие эффекта наследственности в колебательной системе. В такой системе текущее ее состояние зависит от предыстории. Для исследования задачи Коши был применен численный метод из семейства предиктор-корректор — метод Адамса-Башфорта-Мултона, алгоритм которого был реализован в системе компьютерной математики Matlab. С помощью численного алгоритма для различных значений параметров дробного нелинейного осциллятора Матье были построены осциллограммы и фазовые траектории. Показано, что в отсутствии внешнего периодического воздействия в рассматриваемой колебательной системе могут возникать автоколебания, которые на фазовой траектории характеризуется предельными циклами. Проведено исследование предельных циклов с помощью компьютерного моделирования. Показано, что также могут возникать апериодические режимы, т.е. режимы, не относящиеся к колебательным. Поэтому порядки дробных производных могут влиять колебательный режим нелиненого дробного осциллятора Матье: от колебаний с постоянной амплитудой до затухающих и исчезающих совсем.
The work studies the fractional nonlinear Mathieu oscillator using numerical analysis methods in order to establish its various oscillatory modes. Mathieu’s fractional nonlinear oscillator is an ordinary nonlinear differential equation with fractional derivatives in the Gerasimov-Caputo sense and local initial conditions (Cauchy problem). Gerasimov-Caputo fractional derivatives characterize the presence of the heredity effect in an oscillatory system. In such a system, its current state depends on the previous history. To study the Cauchy problem, a numerical method from the predictor-corrector family was used – the Adams-Bashforth-Moulton method, the algorithm of which was implemented in the Matlab computer mathematics system. Using a numerical algorithm, oscillograms and phase trajectories were constructed for various values of the parameters of the Mathieu fractional nonlinear oscillator. It is shown that in the absence of an external periodic influence, self-oscillations can arise in the oscillatory system under consideration, which are characterized by limit cycles on the phase trajectory. A study of limit cycles was carried out using computer simulation. It has been shown that aperiodic regimes can also arise, i.e. modes that are not oscillatory. Therefore, the orders of fractional derivatives can be influenced by the oscillatory mode of a nonlinear fractional Mathieu oscillator: from oscillations with a constant amplitude to damped ones and disappearing completely.
Publisher
Institute of Cosmophysical Research and Radio Wave Propagation Far Eastern Branch of the Russian Academy of Sciences
Reference35 articles.
1. Petras I. Fractional-Order Nonlinear Systems: Modeling, Analysis and Simulation. Berlin: Springer, 2011. 218 DOI: 10.1007/978-3-642-18101-6 pp.
2. Klafter J., Lim S. C., Metzler R. Fractional dynamics: recent advances. Singapore: World Scientific, 2011. 532 DOI: 10.1142/8087 pp.
3. Работнов Ю.Н. Элементы наследственной механики твёрдых тел. М.: Наука, 1977. 384 с.
4. Volterra V. Functional theory, integral and integro-differential equations. New York: Dover Publications, 2005. 288 pp.
5. Нахушев А.М. Дробное исчисление и его применение. М.: Физматлит, 2003. 272 с.