Author:
Петравчук Анатолій Петрович
Abstract
\abstract{ukrainian}{Нехай $\mathbb K$ -- алгебраїчно замкнене поле харатеристики нуль,$A = \mathbb K[x_1,\dots,x_n]$ -- кільце многочленів і$R = \mathbb K(x_1,\dots,x_n)$ -- поле раціональних функцій від $n$ змінних. Позначимо через $W_n = W_n(\mathbb K)$ алгебру Лі всіх$\mathbb K$-диференціювань на $A$(у випадку $\mathbb C$ це алгебра Лі всіх векторних полів на $ \mathbb C^n$ з поліноміальними коефіцієнтами). Для заданого $D \in W_n(\mathbb K)$ будова централізатора$C_{W_n (\mathbb K)}(D)$ залежить від поля констант$\Ker D = \{\phi \in R \ | \ D(\phi)=0\}$(тут ми природнім чином розширюємо кожне диференціювання $D$ на $A$ на поле $R$).Досліджено випадок, коли $tr.\deg_{\mathbb K} \Ker D \le 1$, охарактеризована будова підалгебри $C_{W_n(\mathbb K)}(D)$, зокрема доведено, що якщо $\Ker D$ не містить несталих многочленів, то$C_{W_n(\mathbb K)}(D)$ скінченновимірний над $\mathbb K$. Отримано деякі результати про централізатори лінійних диференціювань в $W_n(\mathbb K).$}
Publisher
Odessa National Academy of Food Technologies
Subject
Applied Mathematics,Geometry and Topology,Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献