Abstract
In the following, bypassing dynamical systems tools, we propose a simple means of computing the box dimension of the graph of the classical Weierstrass function defined, for any real number~$x$, by\[{\mathcal W}(x)= \sum_{n=0}^{+\infty} \lambda^n\,\cos \left ( 2\, \pi\,N_b^n\,x \right),\]where $\lambda$ and $N_b$ are two real numbers such that $0 <\lambda<1$, $N_b\,\in\,\N$ and $\lambda\,N_b >1$, using a sequence a graphs that approximate the studied one.
Publisher
Odessa National Academy of Food Technologies
Subject
Applied Mathematics,Geometry and Topology,Analysis
Reference18 articles.
1. 1. Krzysztof Baranski, Balazs Barany, Julia Romanowska. On the dimension of the graph of the classical Weierstrass function. Adv. Math., 265:32-59, 2014.
2. 2. A. S. Besicovitch, H. D. Ursell. Sets of fractional dimensions (V): on dimensional numbers of some continuous curves. J. London Math. Soc., s1-12(1):18-25, 1937.
3. 3. Claire David. Laplacian, on the graph of the Weierstrass function. arXiv:1703.03371.
4. 4. K. J. Falconer. The geometry of fractal sets, volume 85 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1986.
5. 5. G. H. Hardy. Theorems Connected with Maclaurin's Test for the Convergence of Series. Proc. London Math. Soc. (2), 9:126-144, 1911.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. On fractal properties of Weierstrass-type functions;Proceedings of the International Geometry Center;2019-10-19