Studies of wear resistance and antifriction properties of metal-polymer pairs operating in a sea water simulator

Author:

Bataev DenaORCID, ,Goitemirov RuslanORCID,Bataeva PetimatORCID, , ,

Abstract

Introduction. Sea water is an aggressive environment that causes corrosion, erosion, and cavitation when moving at high speeds of steel, cast iron, bronze, or babbit parts that work satisfactorily only with lubrication. In this case, oil stains are often released into the water, which leads to pollution of the water basin. Materials and methods. To study the wear and friction coefficient, the following materials were chosen: pure polyamide P-610 and antifriction materials based on it Maslyanit D and Maslyanit 12. The following metals were used as the material of the counterbody: stainless steel Cr18Ni9Ti, bronze (9 % Al; 2 % Mn), and titanium alloy VT-3. Results and discussion. It is established that the materials of the “maslyanit” group have significantly better wear resistance and antifriction properties than pure polyamide P-610. It is shown that the reason for such properties of Maslyanit D and Maslyanit 12 is the presence of solid and grease lubricants in its compositions, which simultaneously also play the role of a plasticizer. Finely dispersed metal fillers favorably affect the heat rejection from the friction zone and the growth of the crystalline phase of the polymer. A positive effect of iron minium on the friction of Maslyanit 12, which causes the generation of a protective anti-friction film on the working surfaces of the friction pair, is revealed. A decrease in wear and friction coefficient is found as the purity class of the metal surface increased. The predominantly fatigue mechanism of wear of polymeric materials during friction in a sea water simulator is confirmed. The results of testing Maslyanite 12 in a real marine environment confirmed the positive characteristics of Maslyanit 12.

Publisher

Novosibirsk State Technical University

Subject

Metals and Alloys,Mechanics of Materials,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3