In-situ analysis of ZrN/CrN multilayer coatings under heating

Author:

Vorontsov AndreyORCID, ,Filippov AndreyORCID,Shamarin NikolayORCID,Moskvichev EvgenijORCID,Novitskaya OlgaORCID,Knyazhev EvgeniiORCID,Denisova YuliyaORCID,Leonov AndreiORCID,Denisov VladimirORCID, , , , , , , ,

Abstract

Introduction. Advanced hard coatings combine different properties such as high hardness, wear resistance, corrosive resistance. At present, layer-by-layer deposited zirconium and chromium nitrides are promising hard coating materials. Currently, the multilayer coating process is not sufficiently described in the literature to understand all the processes involved. The problem is the complexity of depositing thick layers of multilayer, multicomponent coatings with different physical characteristics of the coating components. First and foremost this concerns the coefficient of linear thermal expansion (CTE). Since the coating and operating processes consist in heating, coating components with different CTE will be susceptible to cracking, further failure and product failure over time. The purpose of work is in-situ study of multilayer ZrN/CrN coatings by X-ray analysis using synchrotron radiation and qualitative microstress behavior of multilayer coatings formed by plasma-assisted vacuum-arc method on substrate of alloy VK8 (92% WC–8% Co) under heating up to 750°С. Research methodology. Samples of coatings made of chromium and zirconium nitrides deposited on a substrate of the hard alloy VK8 are investigated. The basic method is the X-ray analysis using synchrotron radiation. We used the most common techniques to study the characteristics of multilayered coatings such as the coefficient of linear thermal expansion and the qualitative measurement of microstresses. Results and discussion. The result is the ability to determine changes in the characteristics of multilayer coatings during heating, such as changes in the crystal lattice parameter of each of the coating components separately, the possibility to determine the coefficient of linear thermal expansion of the coating components and the qualitative measurement of microstresses, as well as providing the opportunity, based on the analysis, to form recommendations for further application of the technology of applying multilayer coatings with given characteristics.

Publisher

Novosibirsk State Technical University

Subject

Metals and Alloys,Mechanics of Materials,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3