Affiliation:
1. Jiangxi Mining and Metallurgical Engineering Research Center, China; School of Mechanical and ElectricalEngineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi Province, China
2. School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou,Jiangxi Province, China
Abstract
W celu rozwiązania trudnego problemu identyfikacji obciążenia młyna kulowego podczas operacji mielenia, do identyfikacji obciążenia młyna kulowego wprowadzono wieloskalowy algorytm entropii rozmytej oraz zaproponowano innowacyjną metodę identyfikacji obciążenia młyna kulowego – pełną zintegrowaną dekompozycję empiryczną opartą na szumie adaptacyjnym (CEEMDAN) – wspólne odszumianie z progowaniem falkowym – wieloskalowa metoda identyfikacji obciążenia młyna kulowego metodą rozmytej entropii z odchyleniem wartości średniej (PMMFE). Po pierwsze, sygnały wibracyjne łożysk młyna kulowego są odszumiane za pomocą wspólnej metody odszumiania CEEMDAN z progowaniem falkowym, a analiza pokazuje, że metoda ta ma oczywiste zalety w porównaniu z innymi metodami odszumiania; po drugie, obliczana jest rozmyta entropia, wieloskalowa rozmyta entropia i wieloskalowe rozmyte odchylenie entropii odszumionych sygnałów wibracyjnych, a związek między każdą cechą entropii a obciążeniem młyna jest analizowany dogłębnie i w sposób bogaty w informacje. Na koniec, algorytm wektora wsparcia najmniejszych kwadratów jest wykorzystywany do identyfikacji obciążenia wektora cech. Analiza zmierzonych sygnałów wibracyjnych pokazuje, że ogólny wskaźnik rozpoznawania tej metody wynosi 84,4%, co jest znacznie wyższe niż w przypadku innych metod odszumiania i kombinacji parametrów cech, a eksperymenty pokazują, że metoda rozpoznawania obciążenia młyna oparta na progowaniu falkowym CEEMDAN-PMMFE jest w stanie skutecznie identyfikować różne stany obciążenia młynów kulowych.
Publisher
Polish Academy of Sciences Chancellery