Unsteady flow of silica nanofluid over a stretching cylinder with effects of different shapes of nanoparticles and Joule heating

Author:

Ali Ramzan1,Iqbal Azhar2,Abbass Tasawar2,Arshad Touqeer3,Shahzad Azeem4

Affiliation:

1. University of Doha for Science and Technology, College of General Education, Department of Mathematics, Doha, Qatar

2. Department of Mathematics, University of Wah, Wah Cantt, 47040, Pakistan

3. Department of Basic Sciences, University of Engineering and Technology, Taxila,47050, Pakistan

4. Department of Mathematical Sciences, University of Engineering and Technology, Taxila,47050, Pakistan

Abstract

Indeed, nanofluids have garnered significant interest in various fields due to their numerous advantages and potential ap-plications. The appeal of SiO2 nanofluid, in particular, lies in its low preparation cost, simple production process, controlled chemistry, environmental safety and its exceptional ability to be homogeneously suspended in the base fluid, which makes it a promising candidate for a variety of applications. In this study, we investigate the flow analysis of a water based silicon dioxide nanofluid, passing over a stretched cylinder while subjected to a continuous magnetic field, including Joule heating effects. The research involves the development of a mathematical model and the formulation of governing equations rep-resented as partial differential equations. These equations are subsequently transformed into non-linear ordinary differential equations through suitable transformations. To obtain a numerical solution, the MATLAB bvp4c solver technique is em-ployed. The study investigates the implications of dimensionless parameters on velocity and thermal distributions. It is observed that the velocity distribution f'(η) exhibits a direct relationship with the volumetric fraction ϕ and an inverse relationship with the unsteadiness parameter S, the magnetic parameter M, and the temperature distribution θ(η) shows an enhancement for the increasing ϕ and M, as well as the Eckert number. However, it declines against S and the Prandtl number. The results for local Nusselt number and skin frictions are depicted in Tables.

Publisher

Polish Academy of Sciences Chancellery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3