Simulations and techno-economic analysis of solar cooling system

Author:

Kalina Jacek1,Rabiej Michał1,Silva Carlos Santos2

Affiliation:

1. Silesian University of Technology, Faculty of Energy and Environmental Engineering, Konarskiego 18, 44-100 Gliwice, Poland

2. Technical University of Lisbon, Mechanical Engineering Department, Alameda da Universidade, 1649-004 Lisboa, Portugal

Abstract

In this paper, a solar absorption cooling system with a chilled water storage tank and peak load compression system was considered for cooling the Instituto Superior Tecnico Tower building in Lisbon, Portugal. To fulfill this task, a dynamic simulation of the building was performed using the DesignBuilder software, then a solar collector field was designed. The next step was to build a computational model of the absorption chiller in the Engineering Equation Solver software, which allowed for further simulation of the annual operation of the system supported by the chilled water tank and the backup system with compressed air conditioning. The last stage of the work was the economic analysis of such a system in com-parison with conventional compressed air conditioning. The simulation results and economic analysis showed that the solar absorption cooling system could be a beneficial cooling solution for the Instituto Superior Tecnico Tower building. How-ever, it would have to operate with an energy storage system and a peak load compression backup system to be able to cool the building efficiently all year round. Additionally, such a solution could have a significant positive impact on climate through considerable annual savings in electricity consumption. Results revealed that the proposed system meets the cool-ing demand of the building, mainly by solar-energy-driven absorption chiller. The annual contribution of a backup com-pression chiller ranges from 20% to 36% depending on the size of chilled water storage tanks. Financial calculations re-vealed discounted payback periods in the range of 4.5 to 12.5 years depending on the system configuration.

Publisher

Polish Academy of Sciences Chancellery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3